Содержание:
В биогеохимические циклы Они понимают путь, по которому проходят различные питательные вещества или элементы, входящие в состав органических существ. Этот переход происходит внутри биологических сообществ, как в биотических, так и в абиотических объектах, составляющих его.
Питательные вещества — это строительные блоки, из которых состоят макромолекулы, и они классифицируются в зависимости от количества, которое требуется живому существу в макро и микроэлементах.
Жизнь на планете Земля насчитывает около 3 миллиардов лет, и один и тот же запас питательных веществ перерабатывается снова и снова. Запасы питательных веществ находятся в абиотических компонентах экосистемы, таких как атмосфера, камни, ископаемое топливо, океаны и другие. Циклы описывают пути прохождения питательных веществ из этих резервуаров через живые существа и обратно в резервуары.
Влияние человека не осталось незамеченным в транспортировке питательных веществ, поскольку антропогенная деятельность — особенно индустриализация и посевы — изменила концентрации и, следовательно, баланс циклов. Эти нарушения имеют важные экологические последствия.
Далее мы опишем прохождение и переработку самых выдающихся микро- и макроэлементов на планете, а именно: воду, углерод, кислород, фосфор, серу, азот, кальций, натрий, калий, серу.
Влияние человека на круговорот азота в природе
В последние столетия влияние человеческой деятельности на естественную циркуляцию азота в природе стало весьма ощутимым. Промышленная деятельность, загрязняющая воздух кислотными веществами, в числе которых есть и оксиды азота, приводит к кислотным дождям ‒ осадкам и снегу с пониженным pH (водородным показателем). Оксид азота создаётся в результате высоких температур, при которых осуществляется химическая реакция с соединением азота и кислорода (который составляет лишь 20 процентов воздуха).
На промышленных предприятиях, в том числе на тех, где сжигается органическое топливо, такие высокие температуры, подходящие для создания оксида азота, возникают в двигателях внутреннего сгорания и котлах. В естественных условиях оксид азота образуется во время грозы, при разрядах молний. Из-за антропогенной деятельности количество выделяемого оксида азота (II) увеличилось сверх естественной нормы, а оксид азот (II) может достаточно легко перейти в оксид азота (IV), после чего так же легко вступает в контакт с атмосферной влагой, и результатом становится формирование азотной и азотистой кислот, и эти кислоты во время осадков оказываются в почве, делая её менее благоприятной для жизнедеятельности, к примеру, растений.
Негативным последствием человеческой деятельности являются выбросы в атмосферу оксидов азота вследствие активного промышленного производства аммиака, азотной и серной кислот. Именно оксиды азота являются одним из наиболее распространённых загрязняющих веществ. Также активно изготавливают нитриты, нитратную селитру, органические удобрения, предназначенные для полевых, огородных и садовых работ, и чрезмерное насыщение почв этими веществами пагубно влияет на минеральный состав почвы, делая её менее плодородной.
Ещё одним примером отрицательного воздействия на азотистый почвенный обмен являются сточные воды, неконтролируемый выгул собак, свалки бытовых отходов, изношенная канализация ‒ иными словами, биологическое загрязнение почвы.
Результатом такого становится то, что в почве оказывается слишком много аммиака и солей аммония, меркаптанов и индола, других продуктов гниения органических веществ. Излишки аммиака под действием бактерий переходят в излишки нитратов, которые накапливаются в почве, отражаясь на её плодородности.
Аммонификация
Процесс аммонификации неизбежно связан с гниением, а точнее, с разложением органических веществ, и в первую очередь ‒ белка. Микроорганизмы осуществляют гидролиз белка с помощью фермента под названием протеаза, белок переходит в пептон, потом из него создаются полипептиды, а те идут на формирование аминокислот, которые подвергаются процессу, известному как дезаминирование, и среди продуктов этого процесса есть и аммиак.
Аэробные условия позволяют разложить белок максимально глубоко и окончательно, с полным расходованием энергетического запаса белка, а вот анаэробные условия не позволяют сильно глубоко расщепить белок. Возникающий при гниении неприятных запах связан с выделением сероводорода и меркаптана из тех белков, в которых содержалась сера, а также с выделением индола и скатола, а ещё фенола, возникающие при расщеплении аминокислот. Большая часть выделенного аммиака остаётся в итоге в почве, другая его часть поступает в тела бактерий и микроорганизмов, где и синтезируется.
Те бактерии, что осуществляют аммонификацию, тоже имеют очень широкое распространение во всех видах почв и водоёмов. При этом бактерии, отвечающие за аммонификацию, осуществляют расщепление белка и выделяют аммиак, который может быть окислен и превращён в азотную кислоту в ходе нитрификации. На аммонификацию способны отдельные виды как аэробных, так и анаэробных бактерий, в том числе те, что могут быть частью кишечной микрофлоры животных и человека и в их экскрементах.
После гибели организма животного или человека такие бактерии, бывшие частью микрофлоры, начинают осуществлять ускоренное разложение мёртвого организма с выделением зловония. Вместе с тем, свежие экскременты и навоз невозможно использовать в качестве питательных веществ, поскольку азотистые вещества в них не до конца минерализованы, и им ещё предстоит продолжить распадаться на аммиачные и азотнокислотные соли уже в слое почвы. Ещё аммонификация может осуществляться в перегное и гумусе, но содержащиеся там азотистые вещества распадаются крайне медленно, и в условиях умеренного климата за год может разложиться лишь один-три процента гумуса.
Лучше же разлагается мочевина, или диамид угольной кислоты, её в почве расщепляют уробактерии, выделяющие фермент под названием уреаза, и мочевина сначала становится углеаммиачной солью, которая распадается на аммиак и углекислоту.
Круговорот
Схему круговорота азота в природе условно можно разделить на две части — грунтовую и атмосферную. Круговорот азота через почву осуществляется следующим образом:
- в результате гниения органических веществ (растений, животных) азот превращается в аммиак (NH 3);
- под действием бактерий аммиак окисляется до азотной кислоты (HNO 3);
- азотная кислота вступает в реакцию с элементами почвы, образуя кислые соли (нитраты) — СаСО 3 , Ca(NO 3) 2 ;
- нитраты поглощают растения.
В атмосферу азот также попадает в результате гниения или при горении органических веществ, например, дров или торфа. Под действием разрядов молнии азот соединяется с кислородом, образуя оксид азота (II) — NO, а затем оксид азота (IV) — NO 2 .
Оксиды реагируют с водой, образуя азотную кислоту. Она попадает в почву вместе с дождями, где образуются нитраты.
Кроме того, свободный азот способны усваивать азотфиксирующие бактерии и некоторые виды сине-зеленых водорослей. Азотфиксирующие бактерии (азотфиксаторы) находятся в симбиозе с растениями. Например, клубеньковые бактерии живут на корнях бобовых растений. Азотфиксаторы могут усваивать азот в присутствии или в отсутствии кислорода, т.е. могут являться аэробами или анаэробами. Они также синтезируют нитраты.
Рис. 2. Азотфиксирующие бактерии на клубнях.
Растения могут усваивать азот только в составе солей азотной кислоты. Вместе с листьями азот попадает сначала в организм травоядных животных (консументов первого порядка), а затем — хищных животных (консументов второго порядка). Обратно азот возвращается при гниении и в составе мочевины (CH 4 N 2 O).
Рис. 3. Схема круговорота азота в природе.
Часть нитратов окисляется специальными денитрифицирующими бактериями до свободного азота, который возвращается в атмосферу. Процесс восстановления свободного азота из сложных соединений называется денитрификацией.
Презентация на тему: » Круговорот азота в природе Подготовила: Балакина Юлия 9 «В»» — Транскрипт:
1
Круговорот азота в природе Подготовила: Балакина Юлия 9 «В»
2
Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH 3 ) или ионов аммония (NH 4 + ). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO 3 – ). Поступая в растения (и в конечном счете попадая в организмы живых существ), этот азот участвует в образовании биологических молекул. После гибели организма азот возвращается в почву, и цикл начинается снова.биологических молекул
3
Главный поставщик связанного азота в природе бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.
4
больше всего связанного азота человек производит в виде минеральных удобрений. Как это часто бывает с достижениями технического прогресса, технологией связывания азота в промышленных масштабах мы обязаны военным. В Германии перед Первой мировой войной был разработан способ получения аммиака (одна из форм связанного азота) для нужд военной промышленности. Недостаток азота часто сдерживает рост растений, и фермеры для повышения урожайности покупают искусственно связанный азот в виде минеральных удобрений. Сейчас для сельского хозяйства каждый год производится чуть больше 80 миллионов тонн связанного азота (заметим, что он употребляется не только для выращивания пищевых культур пригородные лужайки и сады удобряют им же).
6
Суммировав весь вклад человека в круговорот азота, получаем цифру порядка 140 миллионов тонн в год. Примерно столько же азота связывается в природе естественным образом. Таким образом, за сравнительно короткий период времени человек стал оказывать существенное влияние на круговорот азота в природе.
Круговорот фосфора
В круговороте фосфора, в отличие от круговоротов углерода и азота, отсутствует газовая фаза. Фосфор в природе в больших количествах содержится в минералах горных пород и попадает в наземные экосистемы в процессе их разрушения. Выщелачивание фосфора осадками приводит к поступлению его в гидросферу и соответственно в водные экосистемы. Растения поглощают фосфор в виде растворимых фосфатов из водного или почвенного раствора и включают его в состав органических соединений – нуклеиновых кислот, систем переноса энергии ( АДФ, АТФ), в состав клеточных мембран. Другие организмы получают фосфор по пищевым цепям. В организмах животных фосфор входит в состав костной ткани, дентина.
В процессе клеточного дыхания происходит окисление органических соединений, содержащих фосфор, при этом органические фосфаты поступают в окружающую среду в составе экскретов. Организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и, таким образом, снова вовлекаться в круговорот.
Поскольку в круговороте фосфора отсутствует газовая фаза, фосфор как и другие биогенные элементы почвы, циркулирует в экосистеме лишь в том случае, если отходы жизнедеятельности откладываются в местах поглощения данного элемента. Нарушение круговорота фосфора может происходить, например, в агроэкосистемах, когда урожай вместе с извлеченными из почвы биогенами перевозится на значительные расстояния, и они не возвращаются в почву в местах потребления.
После неоднократного потребления фосфора организмами на суше и в водной среде, в конечном итоге он выводится в донные осадки в виде нерастворимых фосфатов. После поднятия осадочных пород над уровнем моря в ходе большого круговорота вновь начинают действовать процессы выщелачивания и бигенного разрушения.
Внесение фосфорных удобрений, представляющих собой продукты переработки осадочных пород, позволяет восполнить потребленный фосфор в регионах с интенсивным сельскохозяйственным производством. Однако, смыв удобрений с полей, а также поступление в водоемы фосфатов с продуктами жизнедеятельности животных и человека может приводить к перенасыщению водных экосистем фосфатами и нарушению в них экологического равновесия.
Схема круговорота фосфора приведена на рис. 7.
Лекция 12. Биологический круговорот, круговорот азота, кислорода, углерода
12.2. Круговорот азота, кислорода, углерода
Круговорот азота (рисунок 12.2) является одним из самых сложных круговоротов в природе. Охватывает всю биосферу, а также атмосферу, литосферу, гидросферу. Очень важную роль в круговороте азота играют микроорганизмы. В круговороте азота выделяют следующие этапы:
1-й этап (фиксация азота): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммонийной формы (NH и солей аммония) – это биологическая фиксация; б) вследствие грозовых разрядов и фотохимического окисления образуются оксиды азота, при взаимодействии с водой они образуют азотную кислоту, в почве она превращается в нитратный азот.
2-й этап – превращение в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.
3-й этап – превращение в животный белок. Животные поедают растения, в их организме растительные белки превращаются в животные.
4-й этап – разложение белка, гниение. Продукты метаболизма растений и животных, а также ткани отмерших организмов под воздействием микроорганизмов разлагаются с образованием аммония (процесс аммонификации).
5-й этап – процесс нитрификации. Аммонийный азот окисляется до нитритного и нитратного азота.
6-й этап – процесс денитрификации. Нитратный азот под воздействием денитрифицирующих бактерий восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.
Рисунок 12.2 – Структурная схема круговорота азота
(по Н. И. Николайкину, 2004)
Антропогенное воздействие на круговорот азота заключается в следующем:
1 Промышленное использование азота для получения аммиака примерно на 10% повышает общее количество азота, фиксированного естественным путем.
2 Широкое использование азотных удобрений, превышающее потребности растений, приводит к загрязнению окружающей среды, при этом часть избыточного азота смывается в водоемы, вызывая опасное явление «евтрофирования». Оно вызывает вторичное загрязнение водоемов, нарушение круговорота веществ, изменение их трофического статуса.
Круговорот кислорода сопровождается его приходом и расходом.
Приход кислорода включает: 1) выделение при фотосинтезе; 2) образование в озоновом слое под воздействием УФ-излучения (в незначительном количестве); 3) диссоциацию молекул воды в верхних слоях атмосферы под воздействием УФ-излучения; 4) образование озона – О3.
Расход кислорода включает: 1) потребление животными при дыхании; 2) окислительные процессы в земной коре; 3) окисление окиси углерода (СО), выделяющегося при извержении вулканов.
Круговорот кислорода тесно связан с круговоротом углерода.
Круговорот углерода (рисунок 12.3). Масса углекислого газа (СО2) в атмосфере оценивается в 1012 тонн.
Приход углекислого газа включает: 1) дыхание живых организмов; 2) разложение отмерших организмов растений и животных микроорганизмами, процесс брожения; 3) антропогенные выбросы при сжигании топлива; 4) вырубку лесов.
Расход углекислого газа включает: 1) фиксацию углекислого газа из атмосферы при фотосинтезе с освобождением кислорода; 2) потребление части углерода животными, питающимися растительной пищей; 3) фиксацию углерода в литосфере (образование органогенных пород – уголь, торф, горючие сланцы, а также почвенных компонентов, как гумуса); 4) фиксацию углерода в гидросфере (образование известняков, доломитов).
Постепенное возрастание содержания углекислого газа в атмосфере в сочетании с другими причинами привело к «парниковому эффекту», влияющему на тепловой баланс, на климат нашей планеты.
Большую роль в общем круговороте веществ в природе кроме рассмотренных элементов играют также фосфор, сера, железо.
Рисунок 12.3 – Структурная схема круговорота углерода
(по Н. И. Николайкину, 2004)
Предыдущая |
Азот — «безжизненный» газ, крайне важный для всего живого
Азот — газ, простое химическое вещество, неметалл, элемент таблицы Менделеева. Латинское название Nitrogenium переводится как «рождающий селитры».
Название «азот» и созвучные ему используются во многих странах: во Франции, Италии, России, Турции, в некоторых восточнославянских и в странах бывшего СССР. По основной версии, название «азот» происходит от греческого слова azoos — «безжизненный», так как не пригоден для дыхания.
Азот в основном встречается как газ — в воздухе его около 78% (по объему). Месторождения полезных ископаемых, а которых он содержится — например, чилийской селитры (нитрат натрия), индийской селитры (нитрат калия) большей частью уже истощены, поэтому в промышленных масштабах реактив добывают химическим синтезом прямо из атмосферы.
Свойства
В нормальных условиях N2 — газ без вкуса, цвета и запаха. Не горит, пожаро- и взрывобезопасен, плохо растворяется в воде, спиртах, не токсичен. Плохо проводит тепло и электричество. При температуре ниже -196 °С становится сначала жидким, потом твердым. Жидкий азот — прозрачная, подвижная жидкость.
Молекула азота очень стабильна, поэтому химреактив в основном инертен, взаимодействует в нормальных условиях только с литием, цезием и комплексами переходных металлов. Для проведения реакций с другими веществами требуются особые условия: очень высокая температура и давление, а иногда и катализатор. Не вступает в реакции с галогенами, серой, углеродом, кремнием, фосфором.
Элемент крайне важен для жизни всего живого. Он является неотъемлемой частью белков, нуклеиновых кислот, гемоглобина, хлорофилла и многих других биологически важных соединений. Играет основную роль в обмене веществ живых клеток и организмов.
Азот выпускается в виде сжатого при 150 атмосфер газа, поставляется в баллонах черного цвета с крупной и четкой надписью желтого цвета. Жидкий реагент хранят в сосудах Дьюара (термос с двойными стенками, с серебрением изнутри и вакуумом между стенок).
Опасность азота
В обычных условиях азот не вреден для человека и животных, но при повышенном давлении вызывает наркотическое опьянение, а при нехватке кислорода — удушье. С азотом и его воздействием на кровь человека при резком снижении давления связана очень опасная кессонная болезнь.
Это интересно
Вероятно, все хотя бы однажды видели в фильмах или сериалах, как жидким азотом мгновенно замораживают людей или замки на решетке, сейфе и т. п., после чего они становятся хрупкими и легко разбиваются. На самом деле жидкий азот замораживает достаточно медленно, ввиду своей малой теплоемкости. Именно поэтому с его помощью нельзя замораживать людей для последующей разморозки — не получается равномерно и одномоментно заморозить все тело и органы.
Азот относится к пниктогенам — химическим элементам той же подгруппы таблицы Менделеева, что и он сам. Кроме азота к пниктогенам относят фосфор, мышьяк, сурьму, висмут и искусственно полученный московий.
Жидкий азот — идеальный материал для тушения пожаров, особенно с ценными объектами. После тушения азотом не остается ни воды, ни пены, ни порошка, а газ просто выветривается.
Применение
— Три четверти всего выпускаемого в мире азота идет на производство аммиака, из которого, в свою очередь, производят широко использующуюся в разных сферах промышленности азотную кислоту. — В сельском хозяйстве соединения азота используются как удобрения, а сам азот — для лучшей сохранности овощей в овощехранилищах.— Для производства взрывчатых веществ, детонаторов, топлива для космических аппаратов (гидразина).— Для изготовления красителей, медикаментов.— При перекачке горючих веществ по трубам, в шахтах, в электронных приборах.— Для тушения кокса в металлургии, для создания нейтральной атмосферы в промышленных процессах.— Для продувки труб и резервуаров; распирания пластов в горнодобыче; прокачки топлива в ракетах.— Для закачки в самолетные шины, иногда — в автомобильные.— Для производства особой керамики — нитрида кремния, обладающего повышенной механической, термической, химической стойкостью и многими другими полезными характеристиками. — Пищевую добавку Е941 используют для создания в упаковках консервирующей среды, исключающей окисление и развитие микроорганизмов. Жидкий азот используют при разливе напитков и масел.
Жидкий азот применяется как:
— Хладагент в криостатах, вакуумных установках и т. п. — В криогенной терапии в косметологии и медицине, для проведения некоторых видов диагностики, для хранения образцов биоматериалов, спермы, яйцеклеток.
Сохранить
Фосфор
Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.
В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.
Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.
Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.
Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.
Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.
Сера
В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO2-4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.
Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.
Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».
Этапы круговорота атмосферного азота
Для того чтобы кратко описать и понять этот процесс, нужно представить биосферу, как два соединяющихся сосуда разных размеров. В большом находится вещество из воздуха и воды, в маленьком — элементы, участвующие в жизнедеятельности организмов. В трубке, которая их соединяет — переходящий в разные состояния азот. Так в живой природе происходит его поступление в организм.
Процесс круговорота очень медленный. Он имеет определённую последовательность:
- Поглощение вещества бактериями биосферы.
- Переход из свободного состояния в связанный.
- Усвоение растениями его соединений.
- Поглощение элемента животными.
- Восстановление концентрации микроорганизмами.
Биологический круговорот, круговорот азота, кислорода, углерода
Круговорот азота, кислорода, углерода
Круговорот азота (рис. 12.2) — один из самых сложных циклов в природе. Охватывает всю биосферу, а также атмосферу, литосферу и гидросферу. Микроорганизмы играют очень важную роль в круговороте азота. В круговороте азота выделяют следующие стадии:
- 1 стадия (азотфиксация): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммониевой формы (NH и солей аммония) – это биологическая фиксация; б) в результате грозового разряда и фотохимического окисления образуются оксиды азота; при взаимодействии с водой они образуют азотную кислоту, которая в почве превращается в нитратный азот.
- шаг 2 – преобразование в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.
- шаг 3 – превращение в животный белок. Животные питаются растениями, и в их организме растительные белки превращаются в животные белки.
- 4 фаза – распад белка, гниение. Продукты обмена веществ растений и животных, а также ткани погибших организмов под воздействием микроорганизмов распадаются с образованием аммония (процесс аммонификации).
- шаг 5 – процесс нитрификации. Аммиачный азот окисляется до нитритного и нитратного азота.
- шаг 6 – процесс денитрификации. Под воздействием денитрифицирующих бактерий нитратный азот восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.
Антропогенные воздействия на круговорот азота заключаются в следующем:
- Промышленное использование азота для производства аммиака увеличивает общее количество естественно связанного азота прибл. 10.
- Широкое применение азотных удобрений, превышающее потребности растений, приводит к загрязнению окружающей среды, а часть избытка азота вымывается в водоемы, вызывая опасное явление «эвтрофикации». Это вызывает вторичное загрязнение водоемов, нарушение круговорота веществ и изменение их трофического статуса.
Круговорот кислорода сопровождается его притоком и оттоком.
Поступление кислорода включает:
- выделение при фотосинтезе;
- образование в озоновом слое под действием УФ-излучения (в небольших количествах);
- диссоциация молекул воды в верхних слоях атмосферы под действием УФ-излучения;
- образование озона – О3.
Потребление кислорода включает:
- потребление животными при дыхании;
- окислительные процессы в земной коре;
- окисление угарного газа (СО), выделяющегося при извержениях вулканов.
Цикл кислорода тесно связан с циклом углерода.
Углеродный циклМасса углекислого газа (CO2) в атмосфере оценивается в 10 12 тонн.
Приток углекислого газа включает:
- дыхание живых организмов;
- разложение отмерших организмов растений и животных микроорганизмами, процесс брожения;
- антропогенные выбросы от сжигания топлива;
- вырубка лесов.
Потребление углекислого газа включает:
- фиксацию углекислого газа из атмосферы в процессе фотосинтеза с выделением кислорода;
- потребление части углерода животными, питающимися растительной пищей;
- фиксация углерода в литосфере (образование органических пород — угля, торфа, горючих сланцев, а также таких компонентов почвы, как гумус);
- закрепление углерода в гидросфере (образование известняков, доломитов).
Постепенное увеличение содержания углекислого газа в атмосфере в сочетании с другими причинами привело к «парниковому эффекту», который влияет на тепловой баланс и климат нашей планеты.
Помимо рассмотренных элементов, большую роль в общем круговороте веществ в природе играют также фосфор, сера и железо.