Горючие газы

Что такое горючие материалы

Виды газов

Способность таких газов длительно поддерживать самостоятельный процесс горения позволила использовать их в качестве бытового и промышленного топлива – от квартирной колонки автономного отопления до котлов и турбин тепловых электростанций.

Другие свойства горючих газов и их смесей сделали возможным применение в качестве агентов для холодильного оборудования, в качестве исходного сырья для синтеза большинства видов пластмасс, пластиков, жидких видов топлива, растворителей и других товарных продуктов химической промышленности.

В список используемых горючих природных и получаемых по технологиям промышленного синтеза, газов входят:

Природный газ, который состоит в различных пропорциях (в зависимости от места добычи) из смеси метана, пропана с бутанами, гексана, этана, диоксида углерода, азота.

Природный газ – это продукт биохимического разложения органических материалов в толще земли. Большинство месторождений располагаются на глубинах меньше 1,5 км. Главный компонент – метан с примесями пропана, бутана.

  • Газовый конденсат, попутный углеводородный газ с нефтегазовых месторождений, предприятий химико-технологической переработки нефти, отличающийся непостоянным составом, в котором преобладает наличие этана, пропана; а также присутствуют легкие, тяжелые нефтяные углеводородные соединения, включая керосиновые, бензиновые фракции.
  • Коксовый газ, состоящий из смеси метана, водорода, окиси углерода.
  • Аммиак.
  • Водород.
  • Сероводород.
  • Оксид углерода.
  • Метан, часто называемый болотным газом.
  • Пропан.
  • Бутан.
  • Изобутан.
  • Бытовая газовая смесь на основе пропана, бутана
  • Ацетилен, используемый при производстве работ по газовой резке металлических конструкций, металлолома.
  • Этилен, необходимый для производства полиэтилена.
  • Пропилен.
  • Оксид этилена.
  • Бутадиен.
  • Гексан.
  • Пентан.

Безопасное использование таких газов характерно трубопроводным поступлением в зону горения, что реализовано в варочном и отопительном оборудовании, газовых резаках, а также при плановом горении газовых фонтанов при разведке, на промышленных площадках месторождений.

Свойства природного газа

Природный газ не обособленное вещество – это смесь разных компонентов, основной из которых – метан.

Для его образования были использованы разные органические остатки, условия протекания химических реакций тоже не были одинаковыми.

Ни один ученый не сможет дать вам химическую формулу природного газа – он может только сообщить процентный состав входящих в него веществ. Дополнительными составляющими кроме метана являются углеводороды:

  • этан;
  • пропан;
  • бутан;
  • водород;
  • сероводород;
  • диоксид углерода;
  • азот;
  • гелий.

Из химического состава вытекают и физические свойства природного топлива. Точных параметров тоже нет, ведь они зависят от процентного соотношения компонентов:

  • плотность – 0,68–0,85 кг/м3 в газообразном и 400 кг/м3 в жидком виде;
  • самовозгорание – при температуре 650 °C;
  • удельная теплота сгорания – 28–46 МДж/м³.

Поскольку природный газ почти в два раза легче воздуха, он поднимается вверх. Человек не может задохнуться, оказавшись на дне низины. Но есть другая опасность: если в воздухе присутствует от 5 до 15 % объема природного газа, смесь становится взрывоопасной.

На его основе разработана газотопливная система, применяемая в автомобилях. Октановое число природного газа, используемого в двигателях, – от 120 до 130.

Горение природного газа процесс достаточно сложный, при котором  химическая энергия преобразуется в тепло. Горение бывает полным и неполным.

Условия горения

Понятие пожарной опасности тесно связано с горючестью веществ, материалов, то есть с их способностью загораться и гореть в течение определенного времени. Чтобы горение произошло, необходимо наличие 3-х факторов:

  • потенциально горючего вещества;
  • окислителя;
  • источника огня (или высокой температуры).

Без присутствия одного из них реакция невозможна, так как суть горения — самораспространяющийся окислительный процесс. Идеальным окислителем является кислород. Быстрее всего вещество сгорает в чистом кислороде, но если его содержание в газовой смеси падает до 10%, то процесс прекращается. Кроме кислорода, окислителями являются хлор, фтор, бром, йод и некоторые другие элементы таблицы Менделеева.

Некоторые вещества, например черный порох, содержат окислитель внутри себя, среди своих компонентов. Поэтому порох может гореть в безвоздушной среде и даже в вакууме, а вот дерево, к примеру, в таких условиях не загорится.

Полыхать могут вещества, находящиеся в любом физическом состоянии — твердом, жидком или газообразном (четвертый тип, плазма, в этом вопросе не рассматривается). При этом в силу ряда причин наибольшую пожарную опасность представляет воспламенение горючих жидких веществ и газов, которое происходит легче и может иметь характер взрыва.

Дело в том, что большинство твердых веществ, включая бумагу, дерево, некоторые виды пластмассы, в своем исходном состоянии не горят. Воспламеняются пары этих веществ, которые начинают образовываться при нагревании. Горит паровоздушная смесь над твердым телом, хотя зрительно кажется, что воспламенился сам объект. Список твердых веществ, способных гореть де-факто, без плавления и испарения, относительно невелик. Среди них можно назвать кокс и древесный уголь, которые сами по себе являются продуктами распада, происходящего в процессе горения, каменного угля и древесины соответственно.

Таким образом, для возгорания необходимо (в большинстве случаев) образование смеси из горючих продуктов испарения или разложения исходного сырья — и воздуха, в котором должен содержаться кислород — не менее 10%. Чем больше процент кислорода, тем активнее идет реакция.

Показатели пожарной опасности

Строительные материалы, оживальные и текстильные выделяют в отдельную группу, которая наиболее часто становится источником пожара. Поэтому ей отдельно посвящена 13-я статья закона № 123-ФЗ, которая описывает основные показатели и свойства этих веществ по отношению к огню.

Параметр воспламеняемости означает количество энергии, которое должно быть затрачено тепловым потоком на воспламенение определенного участка поверхности. Определяется в киловаттах на квадратный метр. Легковоспламеняемым веществам достаточно 20 кВт/м2, умеренновоспламеняемым — 20-35 кВт/м2, трудновоспламеняемым нужно больше 35 кВт/м2, чтобы начался пожар.

По горючести материалы данной группы делятся на негорючие и горючие, последние имеют градацию: слабо-, умеренно-, нормально-, сильногорючие. Параметр определяется температурой выделяемого дыма, степенью повреждения объекта и длительностью самостоятельного (без внешнего источника) горения.

Таблица. Классификация горючих материалов по показателю токсичности продуктов горения

Класс опасности

Показатель токсичности продуктов горения в зависимости от времени экспозиции

5 минут

15 минут

30 минут

60 минут

Малоопасные

более 210

более 150

более 120

более 90

Умеренноопасные

более 70, но не более 210

более 50, но не более 150

более 40, но не более 120

более 30, но не более 90

Высокоопасные

более 25, но не более 70

более 17, но не более 50

более 13, но не более 40

более 10, но не более 30

Чрезвычайно опасные

не более 25

не более 17

не более 13

не более 10

Большинство органических веществ данной группы умеренно-, нормально- и сильногорючие (например, дерево, хлопок). Слабогорючие — это, как правило, композиты из органических и неорганических веществ, например, фибролит, войлок с глиняной пропиткой.

Негорючие материалы в большинстве своем — неорганика. Хорошим примером являются гипс, глина, бетон.

Способность веществ распространять пламя по своей поверхности, то есть быстро гореть, зависит от количества тепла, необходимого для воспламенения определенного участка. Так же, как и воспламеняемость, выражается в киловаттах на квадратный метр. У нераспространяющих горение материалов этот параметр — более 11 кВт/м2, у сильнораспространяющих — меньше 5 кВт/м2.

Дымообразующий фактор — это количество вырабатываемого при горении дыма. Выражается коэффициентом дымообразования, минимум — 50 м2/кг, максимум — 500 м2/кг.

По ядовитости продуктов горения (выделяемых при этом газов и веществ, содержащихся в дыме) все вещества градуируются от чрезвычайно опасных до мало опасных.

Горение твердого топлива (гетерогенное горение)

Для горения топлива нужно большое количество воздуха, превышающее в несколько раз по весу количество топлива. При продувании слоя топлива воздухом сила аэродинамического давления потока Р может быть меньше веса кусочка топлива G или, наоборот, больше его. В топках с «кипящим слоем» «кипение» связано с разъединением частиц топлива, что увеличивает объем слоя в 1,5-2,5 раза. Движение частиц топлива (обычно они от 2 до 12 мм) похоже на движение кипящей жидкости, почему такой слой и получил название «кипящего».

В топках с «кипящим» слоем газо-воздушный поток не циркулирует в слоевой зоне, а прямоточно продувает слой. Поток воздуха, пронизывающий слой, испытывает неоднородное торможение, что создает сложное поле скоростей, в котором частицы все время меняют свою парусность в зависимости от положения в потоке. Частицы при этом приобретают вращательно-пульсирующее движение, которое и создают впечатление кипящей жидкости.

Процесс сгорания твердого топлива может быть условно разделен на стадии, накладывающиеся одна на другую. Эти стадии протекают в разных температурных и тепловых условиях и требуют различного количества окислителя.

Свежее топливо, поступающее в топку, подвергается более или менее быстрому нагреванию, из него испаряется влага и выделяются летучие вещества — продукты сухой перегонки топлива. Одновременно протекает процесс коксообразования. Кокс сгорает и частично газифицируется на колосниковой решетке, а газообразные продукты сгорают в топочном пространстве. Негорючая минеральная часть топлива при сгорании топлива превращается в шлак и золу.

Область применения

Свойства инертных газов делают их очень востребованными в сварочной сфере. Основными местами применения являются газовая и газово-дуговая сварка. Они выполняют роль защитной среды, которая отгораживает сварочную ванну с расплавленным металлом от негативного воздействия различных факторов, в том числе и воздушной среды. Как правило, они применяются вместе с техническим кислородом, так как он повышает температуру их горения. При использовании инертных газов швы получаются более надежными и качественными, так как снижается вероятность возникновения брака во время работы.

Вещества используются на строительных площадках при соединении металлоконструкций, в особенности, несущих частей. Ими удобнее работать с тонкими деталями, трубами и прочими объектами, которые сложно поддаются электрической сварке. В ремонтных мастерских по восстановлению автомобилей и прочей сложной техники именно сварка инертными газами является основным методом соединения деталей, так как она обладает деликатным отношением к материалу. В коммунальной сфере, где речь идет о ремонте труб и прочих вещей эти разновидности также используются. При производстве металлических изделий самого различного типа, особенно из цветных сложно свариваемых металлов, инертный газ благородный выступает основным сырьем для работы.

Пропан

Пропан технический — бесцветный горючий газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н8, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. При нормальных условиях пропан находится в газообразном состоянии, а при понижении температуры или повышении давления переходит в жидкое состояние. Так, при температуре 293 К пропан переходит в жидкое состояние при давлении 0,85 МПа. Испарение 1 кг жидкого пропана дает 0,53 м3 паров.

Пропан-бутановая смесь — бесцветный горючий газ с резким запахом, является побочным продуктом при переработке нефти.

Смесь легко превращается в жидкое состояние, например при температуре 233 К пропан-бутановая смесь сжижается при атмосферном давлении. Сжиженные газы хранят только в закрытых емкостях, так как испарение жидкости происходит даже при 273 К.

Плотность пропан-бутана больше плотности воздуха, поэтому необходимо тщательно следить за герметичностью аппаратуры и коммуникаций во избежание образования взрывоопасной смеси газа с воздухом внизу помещения. Заполнение емкостей пропаном и пропан-бутановой смесью, транспортирование их, а также слив газа должны выполняться в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением», утвержденными Госгортехнадзором.

Пропан-бутановые смеси широко применяются при резке сталей, сварке и пайке легкоплавких цветных металлов, закалке, газовой сварке пластмасс. К месту сварки смесь поставляют в стальных баллонах под давлением 1,6 МПа или по газопроводам через перепускную рампу. При испарении 1 кг пропана образуется 500 дм3 газа.

Повышение эффективности использования газового топлива

Эффективность использования газового топлива во многом зависит от его состава. Так, для высокотемпературных процессов целесообразно использовать газ с малым содержанием балласта и высокой жаропроизводительностью. В этом случае обеспечивается повышение производительности газовых установок и благодаря уменьшению продолжительности процесса сгорания газа и снижению потерь топлива в окружающую среду снижается удельный расход топлива на единицу выпускаемой продукции.

Во многих технологических процессах, связанных с процессами сушки воздухом, применяется промежуточный теплоноситель – водяной пар. Получение водяного пара требует дополнительных источников теплоты, а между тем для сушки с успехом можно применять продукты сгорания газа: тогда отпадает необходимость специальных котельных установок и калориферов для нагрева воздуха паром.

Известно, что при сжигании одного кубического метра газа выделяется два кубических метра водяного пара, уходящего с продуктами сгорания. Если теплоту конденсации этих водяных паров использовать для нагрева питательной воды, можно повысить КПД котельных установок.

Другой резерв повышения эффективности использования топлива – сжигание газа в горелочных устройствах при больших тепловых напряжениях, что позволяет получать большее количество энергии в малом объеме.

Многие технологические процессы протекают при высокой температуре уходящих газов. Эффективность использования газа в этом случае повышается, если использовать теплоту уходящих газов для производства пара, нагрева воды или воздуха. Каждая калория, вносимая в печь с подогретым воздухом, экономит более одной калории теплоты сжигаемого газа.

Наиболее прогрессивен метод ступенчатого использования теплоты продуктов сгорания, основанный на сочетании работы низкотемпературных, среднетемпературных и высокотемпературных установок.

Теплоту уходящих газов, отводимых от котлов и печей, можно использовать для отопления сушильных установок, а теплоту конденсации водяного пара, содержащегося в продуктах сгорания газа, отводимых из котлов или сушилок, – для нагрева воды в контактных экономайзерах. Таким образом, продукты сгорания, отводимые из высокотемпературных установок, используют в низкотемпературных процессах для отопления этих установок; КПД ступенчатых установок может быть доведен до 95 %.

Продукты сгорания газа можно с успехом использовать в качестве источника диоксида углерода и инертных газов. Большой интерес представляет применение диоксида углерода для ускорения развития растений и повышения урожая. Известно, что органическая масса растений образуется путем фотосинтеза из СО2 и Н2О.

В атмосфере воздуха содержится по объему около 0,03 % СО2 и 21 % О2. Повышение концентрации диоксида углерода в теплицах с доведением его содержания в воздухе теплиц до 0,3 % позволяет увеличить на 20 % урожай огурцов и других овощей, на 50 % – число цветов и ускорять их развитие, примерно на 100 % повысить зеленую массу табака, чая, герани и других культур.

Обогащение воздуха теплиц диоксидом углерода имеет важное значение, так как с ростом количества теплиц и применением гидропоники, при которой отсутствует выделение СО2 из почвы, потребность в диоксиде углерода значительно возрастает. Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов

Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов.

Продукты полного сгорания газа можно применять также в качестве инертных газов для изоляции огнеопасных материалов от контакта с воздухом, продувки взрывоопасной аппаратуры, газовых коммуникаций.

Как начинается горение

От того, при каких условиях начинается горение, во многом зависит пожарная безопасность. Источник горения — это катализатор, запускающий процесс. В случае с хорошо поддающимися огню веществами источником горения становится сам очаг пожара (система поддерживает сама себя). Некоторые горючие системы веществ и материалов при определенных условиях способны к самовозгоранию. Как правило, их основой являются горючие жидкости.

Величину пожарной опасности любого вещества можно охарактеризовать по температуре вспышки, воспламенения и самовоспламенения. Для жидкостей и газов вводится также такое понятие, как верхний и нижний предел воспламенения.

Таблица. Температуры воспламенения и взрываемости некоторых горючих газов

Наименование газа

Химическая формула

Температура воспламенения

Пределы взрываемости при 20 оС

и давлении 760 мм
рт. ст.

нижний

верхний

Ацетилен

С2Н2

305 – 500

2,3

82

Бутан

С4Н10

430 – 569

1,9

8,5

Водород

Н2

510 – 590

4,2

75

Метан

СН4

537 – 850

5,3

15

Окись углерода

СО

610 – 658

12,5

75

Пропан

С3Н8

466 – 588

2,1

9,5

Сероводород

Н2S

290 – 487

4,3

45,5

Пентан

С5Н12

530 — 610

1,4

7,8

Этан

С2Н6

510 – 594

3

14

Этилен

С2Н4

450 – 550

3

30

Вспышка — это краткосрочная реакция возгорания, протекающая при минимуме нагрева, когда конкретное вещество испаряется или частично распадается до получения газов, способных войти в состав горючей системы. Вспышка может произойти от поджога или повышения температуры до критичного уровня, но сама по себе не способна перейти в стабильное горение — скорость образования горючих газов слишком мала.
Температура воспламенения — это температура, при которой горючая система веществ или материалов входит в режим самоподдержания. В этом случае скорость образования газов равна или превышает скорость их сгорания.

Температура самовоспламенения — наименьшая температура, при которой в результате внутренней химической реакции вещество может нагреться до такого состояния, что воспламенится без внешнего источника. Вещества в таком состоянии представляют наибольшую пожарную опасность.

Пределы воспламенения определяются степенью концентрации горючих газов в объеме воздуха, при которой они способны гореть.

Общие сведения

Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках: в топках паровых и водогрейных котлов, в том числе паротурбинных электростанций, в промышленных печах и в сельском хозяйстве, в камерах сгорания газовых турбин и воздушно-реактивных двигателей, в цилиндрах поршневых двигателей внутреннего сгорания, в камерах сгорания магнитогазодинамических электрогенераторов и т. д.

Топливо в любых теплотехнических установках сжигают для того, чтобы получить теплоту в результате протекания экзотермических химических реакций и получить раскаленные продукты полного сгорания (дымовые газы) или продукты газификации.

В топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания, в камерах сгорания газовых турбин горение ведут с наибольшей полнотой, получая продукты полного сгорания.

В газогенераторах осуществляют газификационные процессы, в которых в качестве окислителей используют кислород, воздух, водяной пар и углекислый газ. Реакции, протекающие в таких устройствах, едины по своей природе с реакциями горения, но в результате их получают горючие газообразные продукты газификации.

Бывает и двухстадийное сжигание топлива: 1 — сначала топливо газифицируется; 2 — затем (в том же устройстве) продукты газификации полностью дожигаются.

Условия сгорания топлива в разных теплотехнических устройствах и подготовка их к сжиганию различны, как различны и сами топлива. Например, в топках паровых и водогрейных котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо горит при давлении, во много раз превышающем атмосферное. Несмотря на указанное выше различие, в процессах сгорания различных видов топлива много общего. Краткая информация о процессах горения и топливных устройствах изложена ниже.

Методы сжигания газа

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рис. 1) на:

  • диффузионные;
  • смешанные;
  • кинетические.

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух – из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Рис. 1. Методы сжигания газа: а – диффузионный; б – смешанный; в – кинетический; 1 – внутренний конус; 2 – зона первичного горения; 3 – зона основного горения; 4 – продукты сгорания; 5 – первичный воздух; 6 – вторичный воздух

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа (рис. 1, а) диффундирует воздух, а из струи газа в воздух – газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся:

  • высокая устойчивость пламени при изменении тепловых нагрузок,
  • отсутствие проскока пламени,
  • равномерность температуры по длине пламени.

Недостатками этого метода являются:

  • вероятность термического распада углеводородов,
  • низкая интенсивность горения,
  • вероятность неполного сгорания газа.

При смешанном методе сжигания (рис. 1, б) горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания (рис. 1, в) к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле.

Достоинство этого метода сжигания – малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок.

Недостаток – необходимость стабилизации газового пламени.

Что такое горючие материалы?

Горючие материалы – это вещества, которые могут гореть и поддерживать горение в окружающей среде. Их можно найти во многих предметах повседневной жизни: строительных материалах, мебели, текстиле, проводах и плитках. Горючие материалы отнесены к классу воспламеняемых веществ, то есть таких, которые, подвергнутые воздействию источника тепла, могут начать гореть.

Одним из самых известных горючих материалов является древесина. Если она достаточно долго находится в условиях влаги и тепла, она может стать прекрасным «кормом» для огня. Однако горючие материалы могут быть и безопасными. Так, некоторые материалы могут иметь вяжущее свойство, а скорость их горения могут быть низкой.

Одним из важнейших качеств горючих материалов является способность начать гореть и поддерживать горение при минимальных условиях. Поэтому горючие материалы могут представлять опасность для безопасности и здоровья людей, если они используются в неправильных условиях или находятся в опасных местах.

  • Основными факторами, влияющими на свойства горючих материалов, являются:
  • Состав материала: некоторые материалы могут иметь большое количество горючих веществ, например, красители и химические соединения, которые делают их более воспламеняемыми.
  • Скорость горения: это свойство связано с тем, насколько быстро вещество горит при воздействии источника тепла.
  • Класс пожарной опасности: материалы различных классов могут иметь различные свойства в зависимости от того, насколько они способны гореть и распространять огонь.
Понравилась статья? Поделиться с друзьями:
Зверополис
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: