Физико-механические характеристики пластмасс
Вид полимера | Физико-механические характеристики при 20°C | ||||||
Плотность, кг/м3 | Прочность при разрыве, МПа | Относительное удлинение при разрыве,% | Проницаемость по водяным парам, г/м2 за 24 часа | Проницаемость по кислороду, см3/(м2хатм) за 24 часа | Проницаемость по CO2, см3/(м2хатм) за 24 часа | Температура плавления, °C | |
ПВД | 910-930 | 10-16 | 150-600 | 15-20 | 6500-8500 | 30000-40000 | 102-105 |
ПНД | 940-960 | 20-32 | 400-800 | 4-6 | 1600-2000 | 8000-10000 | 125-138 |
ПП | 900-920 | 30-35 | 200-800 | 10-20 | 300-400 | 9000-11000 | 165-170 |
ПВХ | 1370-1420 | 47-53 | 30-100 | 30-40 | 150-350 | 450-1000 | 150-200 |
ПС | 1050-1100 | 60-70 | 18-22 | 50-150 | 4500-6000 | 12000-14000 | 170-180 |
ПА | 1100-1150 | 50-70 | 200-300 | 40-80 | 400-600 | 1600-2000 | 220-230 |
ПК | 1200 | 62-74 | 20-80 | 70-100 | 4000-5000 | 25000-30000 | 225-245 |
Это может быть интересно:
Таблица «Свойства пластмасс»
Где взять макулатуру? Надо работать с дворниками
Направления использования важнейших видов отходов, представляющих собой традиционное вторичное сырье
Другие виды пластмасс
Существуют и другие типы пластмасс, не принадлежащие ни к одному из упомянутых в предыдущей классификации. Некоторые виды пластика можно различать по размеру, и они имеют префикс макро или микро. Его также можно классифицировать по способность к биоразложению, независимо от того, перерабатываются ли они на заводах по переработке. Мы собираемся объяснить вам, какие основные типы пластиков не вошли в предыдущую классификацию:
Биопластик
Это те, которые производятся из природных ресурсов, которые являются биологическими и возобновляемыми. Эти пластмассы не вредят окружающей среде и полезны. Вот они:
- Крахмал для PLA (полимолочная кислота)
- Сахарный тростник для этилена.
- Сахарный тростник для полиэтилена.
Биоразлагаемый пластик
Многие путают их с вышеперечисленным и имеют несколько разных нюансов. И речь идет о тех типах пластика, которые сделаны из материала, который может разрушаться некоторыми микроорганизмами. Эти микроорганизмы нуждаются в полных условиях окружающей среды, поскольку они способны преобразовывать пластик в биомассу, газы и воду.
Термопласты
Это те, которые при нагревании плавятся, а при охлаждении возвращаются к твердой консистенции. Это полимеры, которые обладают способностью плавиться и изменять форму. Преимущество этих пластиков в том, что эта функция также непрерывна бесконечно. Из-за такого химического поведения термопласты подвергаются механической переработке. Среди этих парней у нас есть поливинилхлорид, полипропилен, полиэтилен и поликарбонат, Среди других.
Термореактивные пластмассы
Как указывает само слово, это материалы, которые после нагревания и формования можно снова плавить или плавить. Следовательно, они не могут изменить форму после формования. Вот некоторые примеры: синтетический каучук, вулканизированный натуральный каучук, полиуретаны, силиконы, эпоксидная смола, и т.д.
Микропластик
Это те вещества, которые в настоящее время считаются одним из основных загрязнителей окружающей среды и представляют большую опасность для здоровья каждого человека. Это небольшие синтетические частицы, полученные из некоторых нефтепродуктов. Его размер обычно меньше 5 мм., поэтому его существование невозможно оценить. Его можно включить в пищевую цепочку продуктов, поступающих из моря.
Надеюсь, что с помощью этой информации вы сможете больше узнать о видах пластмасс и их основных характеристиках.
Полиамиды и полистирол
Полиамиды и полистирол относятся к термопластичным пластмассам. Используются в качестве конструкционных материалов. Полиамиды — твердые термопластичные полимеры с широко известными названиями: капрон, нейлон, лавсан, в состав которых входят амидная группа (-NH-CO-), а также этиленовые группы (-CH2-), повторяющиеся от 2 до 10 раз.
Полиамиды — кристаллизующиеся полимеры. При одноосной ориентации из них получают волокна, нити, пленки. Свойства разных видов полиамидов близки, они являются хорошим антифрикционным материалом, обладают вибрационными свойствами, высокими показателями прочности при ударных нагрузках и изгибе, имеют высокую жесткость, твердость поверхности, морозостойки. Недостатки полиамидов — гигроскопичность и подверженность старению.
Применяются полиамиды в электротехнической промышленности, для изготовления фурнитуры, стяжек, полкодержателей и других мелких деталей, работающих под большими нагрузками. Их используют также для антифрикционных покрытий металлов.
Полистирол (ПС) (-CH2—CHC6H5-)n является производной этилена. Это твердый, жесткий, прозрачный материал, хорошо окрашивается.
Полистирол наиболее стоек к воздействию ионизирующего излучения по сравнению с другими термопластами. Полистирол растворим в бензоле, но стоек к кислотам, щелочам, маслам. Недостатки полистирола — низкая теплостойкость, склонность к старению и образованию трещин. Полистирол применяют при изготовлении деталей радиотехники, приборов. Ударопрочный полистирол — один из основных конструкционных материалов. Он обладает высокой твердостью, прочностью к ударным нагрузкам, эластичностью, сопротивлением на разрыв; стоек к действию температуры от +65 до –40°С. Применяется при изготовлении ящиков, погонажных элементов детской мебели, крепежной фурнитуры и др.
Модификацией полистирола являются акрилонитрилбутадиеностирольные (АСБ) пластики — сополимеры полистирола с синтетическими каучуками. Они являются ударопрочным материалом, превосходят обычный полистирол по ударной вязкости в 3–5 раз, а по относительному удлинению — в 10 раз. АСБ-пластики имеют высокую прочность, твердость, жесткость, устойчивость к истиранию, ударопрочность. Изделия из этого тройного сополимера хорошо сохраняют форму и размеры во время эксплуатации. Применяются при изготовлении каркасов кресел, стульев, детской мебели и др.
Что такое пластмасса?
Пластмассы — это термин, обычно используемый для описания широкого спектра синтетических или полусинтетических материалов, которые используются в огромном и постоянно растущем диапазоне приложений. Куда бы вы ни посмотрели, вы найдете пластик. Мы используем пластмассовые изделия, чтобы сделать нашу жизнь чище, проще, безопаснее и приятнее. Мы находим пластик в одежде, которую носим, в домах, в которых мы живём, и в машинах, в которых мы путешествуем. Игрушки, с которыми мы играем, экраны, на которые мы смотрим, ІТ-инструменты, которые мы используем, и медицинское оборудование, от которого мы получаем выгоду, также содержат пластик.
Слово «пластик» происходит от греческого «plastikos», что означает «пригодный для лепки». Это относится к пластичности материала и к его удобной формуемости во время производства. Пластмассы удобно отливать в формы, прессовать или экструдировать в различном виде — плёнок, волокон, пластин, трубок, бутылок, коробок и т.д.
Мы говорим о пластике, как если бы это был единый материал, но есть на самом деле много разных пластиков. Пластмассы — это (в основном) синтетические (созданные руками человека) материалы, состоящие из полимеров. Эти полимеры представляют собой длинные молекулы, построенные вокруг цепочек атомов углерода (обычно с водородом, кислородом, серой и азотом), заполняющими пространства.
Можно думать о полимере как о большой молекуле, образованной повторением небольшого фрагмента, называемого мономером, снова и снова. «Поли» означает «много», поэтому «полимер» — это просто сокращение от «много мономеров». Если вы представите себе длинный автопоезд, состоящий из множества грузовиков, соединенных вместе, то на это как раз и похожи полимеры. Другими словами, полимеры обычно имеют очень большие и тяжёлые молекулы.
Пластмасса и ее состав
Пластмасса — это ненатуральный материал. Изделия из нее производят под нагревом или путем давления, после чего деталей приобретает нужную форму и не меняет ее в процессе эксплуатации.
Пластмасса может изготовляться из полимеров натурального и искусственного происхождения.
Полимеры — это смолы, которые получают по технологии поликонденсации или полимеризации из низкомолекулярных соединений. Фактически это высокомолекулярное соединение из мономеров.
Одновременно с этим смолы не обладают нужной крепостью и физико-химическими свойствами.
По этой причине в состав пластмассы входит еще несколько составляющих:
-
пластификаторы, повышающие пластичность пластмассы;
-
красители, для получения определенного цвета;
-
наполнители придающие определенные характеристики готовому изделию.
Например, чтобы пластмасса стала более прочной, в состав добавляют асбест.
Что представляют собой пластмассы?
Прежде чем сосредоточить внимание на типах пластмасс и их применении, сначала необходимо ответить на вопрос, что они собой представляют по существу. Определение: к пластмассам относится широкая группа материалов, производимых промышленным способом
Эти материалы изготавливаются из полимеров, т. е. химических соединений, чаще всего состоящих из органических молекул. Из-за своего состава пластмассы также называют полимерным материалом. Некоторые для упрощения называют пластмассу просто пластиком. Однако стоит знать, что существует множество различных видов пластмасс, имеющих разное назначение и характерное название.
Пластмасса применяется как в качестве основного компонента, так и в качестве добавки, для изготовления предметов или материалов, которые мы используем каждый день. Каждый полимерный материал имеет множество различных областей применения, которые тесно связаны с его характерными свойствами. Чем отличаются пластмассы и где они применяются?
Классификация пластмасс
В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.
Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.
Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.
К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).
Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс
В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.
Таблица 1.
Рис. 3. Изделия, где применены термореактивные пластмассы
Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.
Рис. 4. Пресс-форма для литья пластмасс
В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.
Таблица 2.
Рис. 5. Изделия из термопластичных пластмасс
Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).
Особенности утилизации
Полимеры обладают различными химическими свойствами, потому переработка тех или иных видов пластика может иметь существенные различия. Чаще всего сложность заключается в том, чтобы правильно рассортировать и хорошо очистить ненужные изделия
Это важно сделать, так как не все виды пластика совместимы друг с другом, а оставшаяся на предметах грязь может ухудшить качество конечного материала. Сегодня широко используются следующие методы переработки пластика:
- Гидролиз подразумевает расщепление пластмассы при высокой температуре с помощью определённого состава. В итоге образуется гранулированный материал, максимально очищенный от ядовитых соединений. Подобный метод недешёвый и занимает много времени.
- Гликолиз осуществляют при температуре 210—250 °C. В этом случае уже необязательно тщательно очищать материал и сортировать отходы. Полученное сырьё не задействуется в производстве посуды и тары для пищевых продуктов.
- Метанолиз заключается в расщеплении отходов под давлением. Этот способ требует особо тщательной сортировки и очистки. Значительные энергоресурсные затраты — основной минус этой технологии.
- Пиролиз базируется на методе термической деструкции. Во время переработки недопустимо попадание воздуха. Материал расщепляется на мономеры. Сортировать и очищать отходы необязательно.
Понять, что изделия из полимеров не представляют опасности для здоровья, помогут нанесённые на них маркировочные знаки. Например, HDPE 2 означает, что материал не представляет никакой угрозы для здоровья и может перерабатываться повторно.
Потребительские свойства пластиковой посуды
Пластиковая посуда отличается маленьким весом, не бьётся и стоит дёшево, поэтому многие используют её ежедневно
Однако важно помнить, что она может нанести существенный вред здоровью. Было неоднократно доказано, что применение посуды из пластика вызывает проблемы со здоровьем: мигрени, общее недомогание, приступы бронхиальной астмы, аллергию, мутагенные изменения в организме и даже рак
Выбирая пластиковую посуду, нужно обращать внимание на её потребительские свойства, то есть характеристики, которые представляют особую важность для использования подобных изделий. Можно выделить следующие свойства:
- безопасность для пищи и напитков (соответствие медицинским и гигиеническим нормативам);
- возможность использования для горячих и холодных блюд;
- способность сохранять форму при соприкосновении с горячим;
- безопасное хранение и разогрев продуктов в СВЧ;
- стойкость к химическим составам;
- возможность держать посуду с горячей едой в руках;
- морозостойкость;
- привлекательный внешний вид;
- упругость;
- прочность;
- устойчивость;
- компактность;
- достаточная вместимость;
- маленький вес;
- разные размеры и формы;
- экологичность;
- несложная утилизация.
HDPE или PE HD
HDPE или PE HD – полиэтилен высокой плотности. Относительно недорогой, устойчив к температурным воздействиям. Такой пластик используется при изготовлении пластиковых пакетов, одноразовой посуды, пищевых контейнеров, пакетов для молока и тары для моющих и чистящих средств. Поддается переработке, годен для вторичного использования. Относительно безопасен, хотя может выделять формальдегид (токсичное вещество, которое поражает нервную, дыхательную и половую системы, может вызвать генетические нарушения у потомства).
Как определить ПЭВД.
Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.
Преимущества пластмасс
Преимущества пластмасс по сравнению с металлами очевидны.
Во-первых, пластик существенно легче. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива и, как следствие, выброс выхлопных газов.
Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.
К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления… Словом, неудивительно, почему полимерные материалы находят столь широкое применение в автомобилестроении.
Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомнить хотя бы небезызвестный «Трабант», выпускавшийся в Германии более 40 лет назад на заводе в Цвик-кау — его кузов был целиком изготовлен из слоистого пластика.
Для получения этого пластика 65 слоев очень тонкой хлопчатобумажной ткани (поступавшей на завод с текстильных фабрик), чередующихся со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.
До сих пор кузова гэдээровских «Трабантов», про которые пели песни, рассказывали легенды (но чаще сочиняли анекдоты), лежат на многих свалках страны. Лежат… но ведь не ржавеют!
Шутки шутками, а перспективные разработки цельнопластмассовых кузовов серийных авто есть и сейчас, многие кузова спортивных автомобилей целиком изготавливаются из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.
Вот только в отличие от кузовных панелей народного «Траби», пластиковые детали современных автомобилей уже не вызывают иронической улыбки. Напротив — их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением.
Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.
Пластмассы — в массы
В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе.
Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.
Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс.
От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию.
С тех-то пор все и началось… Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.
Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности. Не исключением является и автомобилестроение, где пластик используется все шире, неудержимо вытесняя своего основного конкурента — металл.
По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.
Если тип пластика неизвестен
Вот к нам в руки попала пластиковая деталь, не имеющая на себе никакой маркировки. Но нам позарез нужно выяснить что это за материал, или хотя бы его тип — термопласт это или реактопласт.
Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не будут взаимодействовать. В связи с этим появляется необходимость «опознать» неизвестный пластик, чтобы правильно подобрать ту же сварочную присадку.
Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и т.д.
Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к тому или иному типу полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.
Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт. Теперь убираем пламя
Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид
Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.
Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.
Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то она наверняка изготовлена из термопласта, а если имеются следы снятых наждаком заусенцев, значит это реактопласт.
Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.
Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие пластики имеют плотность больше единицы, поэтому они будут тонуть.
Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.
P.S
В следующей статье мы уделим внимание вопросам подготовки и покраски пластиковых деталей
Газонаполненные и фольгированные пластмассы
К газонаполненным пластмассам относят легкие пластмассы— пенопласты и поропласты, которые состоят из мельчайших ячеек или пор, отделенных друг от друга тонкой пленкой полимера.
Материалы, состоящие из замкнутых, несообщающихся ячеек, называют пенопластами, а материалы, в которых преобладают сообщающиеся между собой поры, — поропластами. Когда от материала требуются высокие теплои электроизоляционные свойства и водонепроницаемость, применяют пенопласты. Для звукоизоляции используют поропласты.
Пенопласты и поропласты получают насыщением расплавленной смолы газами под давлением, при этом происходит вспенивание полимера. В пенопластах 90…95% объема занимают газы. Наибольшее применение получили пенополиуретаны, обладающие высокими диэлектрическими, тепло-, эвукои виброизоляционными свойствами, высокой удельной прочностью, большой влагостойкостью, стойкостью к кислотам и щелочам, малым коэффициентом теплопроводности, низкой плотностью (до 20 кг/м3).
Фольгированные пластмассы имеют специальное назначение: их применяют при изготовлении плат с печатным монтажом, кодовых переключателей, печатных якорей электродвигателей и других деталей. Фольгированные пластмассы представляют собой слоистый пластик (гетинакс, стеклотекстолит), облицованный с одной или двух сторон медной фольгой толщиной 35 или 50 мкм.
Медную фольгу получают электролитическим осаждением, что обеспечивает ей однородный состав. Для улучшения сцепления с пластиком одну сторону фольги обрабатывают в щелочном растворе (оксидируют). Склеивание фольги с пластиком производят клеем БФ-4 в процессе прессования.
Фольгированные пластики (табл. 1) должны удовлетворять требованиям, связанным с технологией производства печатных схем, и условиям их эксплуатации. Фольгированный пластик должен выдерживать воздействие повышенных температур в процессе производства печатных плат (взаимодействие припоя при пайке схем) и обеспечивать достаточную прочность сцепления фольги при длительной эксплуатации изделий.
Таблица 1. Фольгированные пластики
Название | Марка | Толщина, мм | Предел прочности при растяжении σв, МПа | Прочность сцепления с фольгой, Н/см | Плотность, г/см3 | Рабочие температуры, °С |
Гетинакс фольгированный | ГФ-1-П | 1,5…3,0 | 11,5 | 13,5 | 1,5…1,85 | От –60
до +100 |
Стеклотекстолит фольгированный | СФ-2 | 0,8…3,0 | 280 | 13,5 | 1,9…2,9 | От –60
до +120 |
Низкочастотный фольгированный диэлектрик | НФД-180-2 | 0,8…3 | 320 | 18,0 | 1,8…2,0 | От –60
до +180 |
Фольгированный диэлектрик для многослойных плат | ФДМ-2 | 0,25 | 180 | 12,5 | 3,5…4,0 | От –60
до +100 |
Фольгированный стеклопластик | СФЭД | 0,7…2,0 | 260 | 26 | 1,9…2,9 | От –60
до +120 |
Фольгированный асбопластик | АФЭД | 1,7…2,0 | 280 | 9,5 | 1,8…2,9 | От –60
до +180 |
Механические свойства пластмасс
Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).
Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)
Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.
Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).
Рис. 7. Детали конструкционного применения из пластмасс
В таблице 3 указаны механические свойства термопластов общего назначения.
Таблица 3.
Несколько примеров по обозначению (см. табл. ниже).
ПЭВД | Полиэтилен высокого давления | ГОСТ 16337-77 |
ПЭНД | Полиэтилен низкого давления | ГОСТ 16338-85 |
ПС | Полистирольная плёнка | ГОСТ 12998-85 |
ПВХ | Пластификаторы | ГОСТ 5960-72 |
АБС | Акрилбутодиентстирол | ГОСТ 8991-78 |
ПММА | Полиметилметаакрилат | ГОСТ 2199-78 |